Theory and Practice of strain gages

單秋成

Related Sections in the Textbook

E. O. Doebelin, Measurement Systems:- Application and design, 5th ed., McGraw Hill, 2003

- ✓ Sec.4.3 pp. 228-253
- ✓ Chap.5 pp. 432-480
- ✓ Sec.10.1 pp.837-843

Introduction to resistance strain gage

- Equipment for strain measurement.
- Basic theory of resistance strain gage
- Fundamental structure of strain gages
- How to Install a strain gage
- > The Wheatstone bridge
- Factors that affect the accuracy of strain gages
- How to select a suitable strain gage

開利式

The Wheatstone bridge

- ➤ The Wheatstone bridge
- Interrogation of the Wheatstone bridge
- Balancing the bridge
- Calibration of the bridge
- Temperature compensation techniques
- Strain gage layout for different applications

単秋成

General sensor characteristics

♦ Sensors:

Convert a Signal or Stimulus (Representing a Physical Property) into an Electrical Output

♦ Transducers:

Convert One Type of Energy into Another

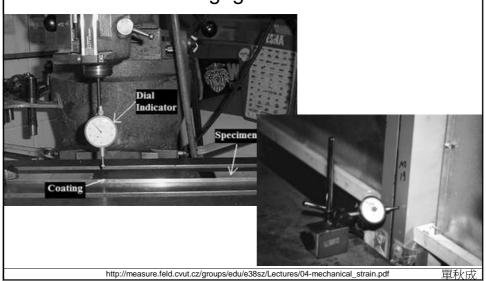
- ◆ The Terms are often Interchanged
- ◆ Active Sensors Require an External Source of Excitation: RTDs, Strain-Gages
- ◆ Passive (Self-Generating) Sensors do not:

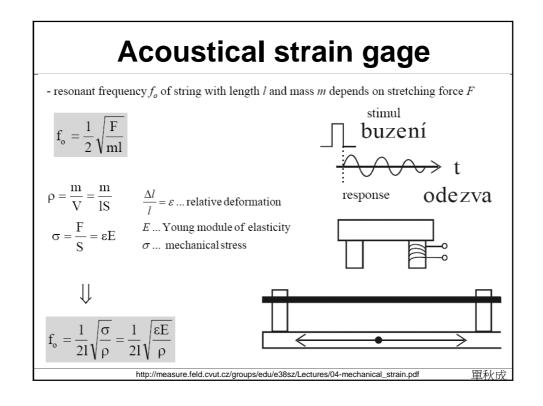
Thermocouples, Photodiodes

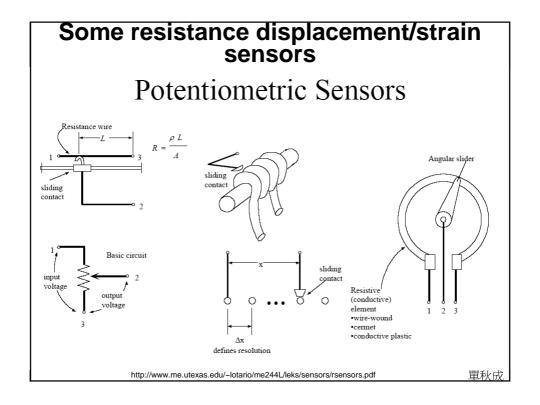
www. analog.com\library\analogDialogue\archives\39-05\Web_Ch4_final.pdf

出われば

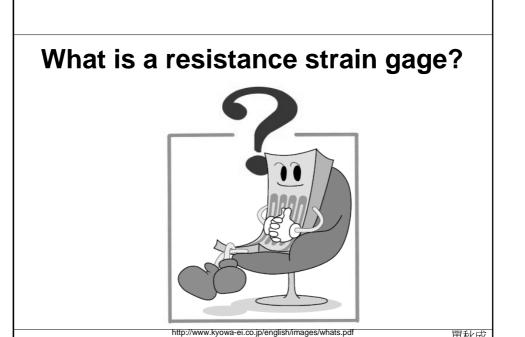
Typical sensors and their output formats


PROPERTY	SENSOR	ACTIVE/	OUTPUT		
		PASSIVE			
Temperature	Thermocouple	Passive	Voltage		
	Silicon	Active	Voltage/Current		
	RTD	Active	Resistance		
	Thermistor	Active	Resistance		
Force /	Strain Gage	Active	Resistance		
Pressure	Piezoelectric	Passive	Voltage		
Acceleration	Accelerometer	Active	Capacitance		
Position	LVDT	Active	AC Voltage		
Light Intensity	Photodiode	Passive	Current		
www. analog.com\library\analogDialogue\archives\39-05\Web_Ch4_final.pdf					


Gages for measuring strain

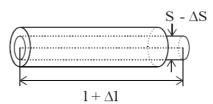

開利式

Mechanical strain gage

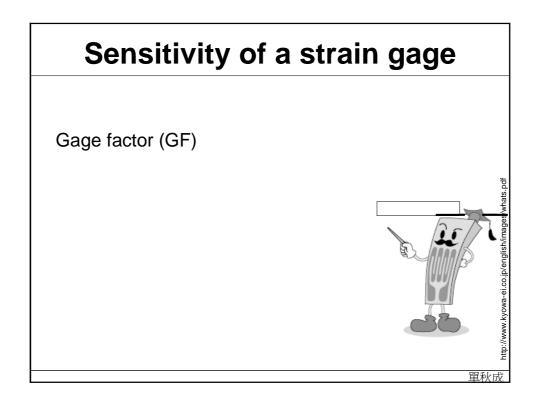

A mechanical dial gage.

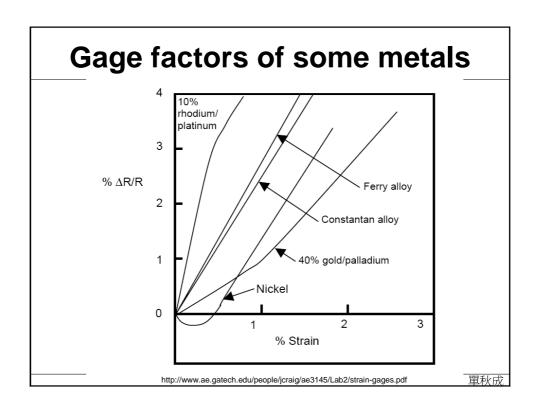
Resistance Strain gage

Pizeoresistive effect


- ➤ Lord Kelvin showed in 1856 that the resistance of copper and iron wires changed when they are subjected to mechanical strain.
- The change in resistance is very small and cannot accurately be measured by an digital ohmmeter on a DVM.
- ➤ In the absence of any electronic amplifier, Lord Kelvin used a null detection method to measure the resistance changes.

開秋成


Principle of Piezoresistive effect


- basic relation:

http://measure.feld.cvut.cz/groups/edu/e38sz/Lectures/04-mechanical_strain.pdf

Gage factors of some metals

Table 1. Gage Factors for Various Grid Materials

Material	Gage Fa	Ultimate Elongation	
	Low Strain	High Strain	(%)
Copper	2.6	2.2	0.5
Constantan*	2.1	1.9	1.0
Nickel	-12	2.7	
Platinum	6.1	2.4	0.4
Silver	2.9	2.4	0.8
40% gold/palladium	0.9	1.9	0.8
Semiconductor**	~100	~600	

^{*} similar to "Ferry" and "Advance" and "Copel" alloys.

http://www.ae.gatech.edu/people/jcraig/ae3145/Lab2/strain-gages.pdf

開利は

Gage factors of some metals

Example 1

Assume a gage with GF = 2.0 and resistance 120 Ohms. It is subjected to a strain of 5 microstrain (equivalent to about 50 psi in aluminum). Then

Example 2

Now assume the same gage is subjected to 5000 microstrain or about 50,000 psi in aluminum:

http://www.ae.gatech.edu/people/jcraig/ae3145/Lab2/strain-gages.pdf

^{**} semiconductor gage factors depend highly on the level and kind of doping used.

Introduction to resistance strain gage

- Equipment for strain measurement.
- > Basic theory of resistance strain gage
- Fundamental structure of strain gages
- How to Install a strain gage
- ➤ The Wheatstone bridge
- Factors that affect the accuracy of strain gages
- How to select a suitable strain gage

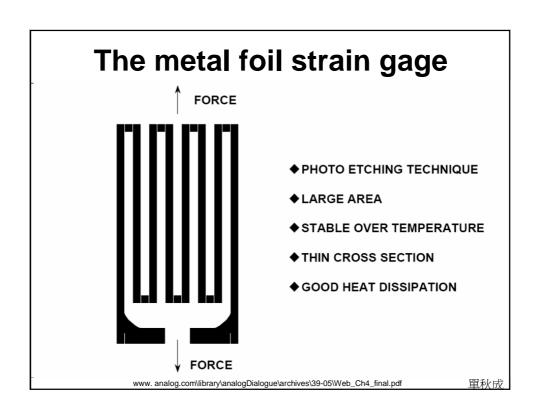
單秋成

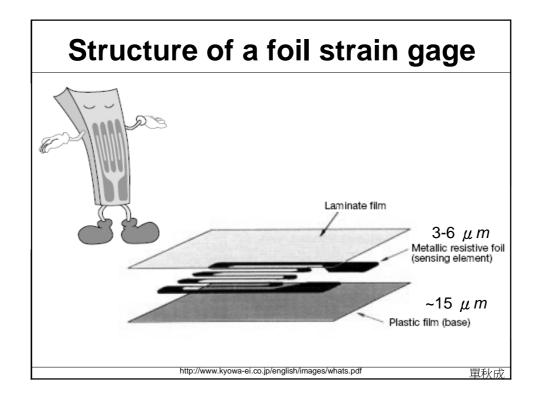
Different types of piezoresistive strain gage Resistive strain gages AAAAAAAA free grid SiO, Al bonded metal n-Si sputtering strain gages bonded monocrystallic semiconductor to Si substrate polycrystallic (sputtered) http://measure.feld.cvut.cz/groups/edu/e38sz/Lectures/04-mechanical_strain.pdf

PARAMETER	METAL STRAIN GAGE	SEMICONDUCTOR STRAIN GAGE 0.001 to 3000 με 50 to 200		
Measurement Range	0.1 to 40,000 με			
Gage Factor	2.0 to 4.5			
Resistance, Ω	120, 350, 600,, 5000	1000 to 5000 1% to 2%		
Resistance Tolerance	0.1% to 0.2%			
Size, mm	0.4 to 150 Standard: 3 to 6	1 to 5		

Figure 4-26: A comparison of metal and semiconductor type strain gages

www. analog.com\library\analogDialogue\archives\39-05\Web_Ch4_final.pdf


單秋成


Transverse sensitivity

A single section of wire along a small gage length is not sensitive enough. Must has a number of section looped together.

Transverse strain affects the resistance of the strain gage:

- ✓ through poisson ratio effect, on the axial portion of the gage.
- ✓ On the transverse portion of the gage.

Introduction to resistance strain gage

- > Equipment for strain measurement.
- Basic theory of resistance strain gage
- > Fundamental structure of strain gages
- ➤ How to Install a strain gage
- ➤ The Wheatstone bridge
- Factors that affect the accuracy of strain gages
- How to select a suitable strain gage

開利成

How to install a gage

B129

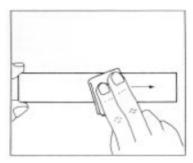
単秋成

Surface preparation

- Brushing off loose particles
- Remove paint, rust and plating

http://www.vishay.com/brands/measurements_group/guide/ta/csc/csc.ht

- degreasing
- Abrading for optimum bonding


Class of installation	Surface Finish, rms microinch	Surface Finish, rms micrometer
General stress analysis	63 - 125	1.6 - 3.2
High elongation	>250*	>6.4*
Transducers	16 - 63	0.4 - 1.6
Ceramic cement	>250	>6.4
http://www	w vishay com/brands/measurements aroun/au	ide/ib/b120/120c1 htm

Surface preparation

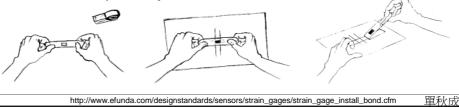
- ➤ For transducer application where good and long lived bonding is needed, etching with dilute acid may be applied followed by neutralizing with an alkali.
- Mark off the layout lines for the strain gage position using light scribing or burnishing with a 4H drafting pencil.

Surface preparation

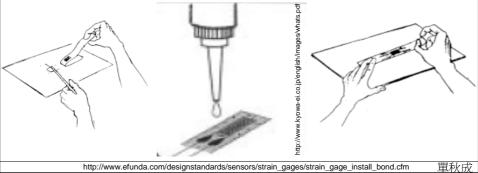
➤ Re-clean the gage position thoroughly with degreaser (move in one direction with force), neutralize if necessary.

http://www.kyowa-ei.co.jp/english/images/whats.pdf

單秋成


Handling of the strain gages

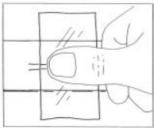
- Never touch strain gages by hand
- Handled only with rounded tweezers, or vacuum pen.
- Hold strain gage at the backing support, not at sensor grid.
- Strain gages do not require cleaning before bonding unless they have been accidentally contaminated by the user.
- Should strain gages have been touched by hand, clean it immediately with IPA and cotton tipped applicators, (do not use cotton applicators with plastic grip).


http://www.blh.de/application/appl145b.htm

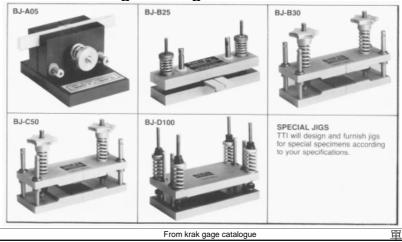
Gage bonding

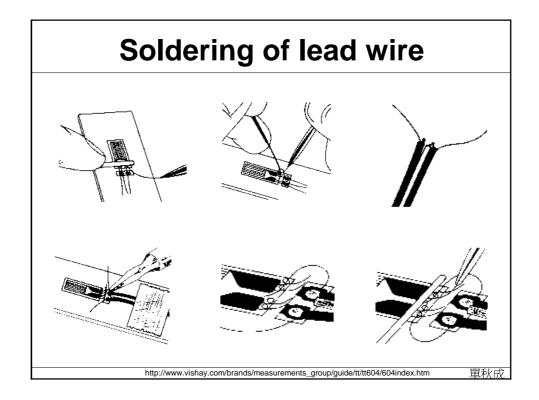
- Wash hand thoroughly with soap and water. Clean the working desk area and all related tools with solvent or degreasing agent.
- Use tweezer to take out the strain gage from package and fix it with low tack adhesive tape.
- Position the gage against the layout lines. For very accurate work, a low magnification microscope may be used.

Apply adhesive according to manufacturer's recommendation. Do not spread the adhesive throughout the surface yet as this accelerates curing.



http://www.nakka-rocketry.net/articles/Gages.PDF


聞秋成

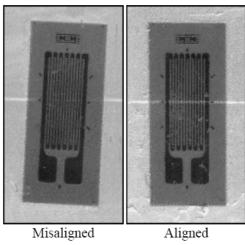

- Press with finger using considerable pressure for duration specified by the manufacturer.(pressure and temperature from the finger aid curing)
- > Special clamping tool and oven curing may be needed for transducer grade operation.

http://www.kyowa-ei.co.jp/english/images/whats.pdf

Transducer grade preparation often involves clamping with special tool and baking in the oven to ensure thorough curing.

Cleaning, checking and protection

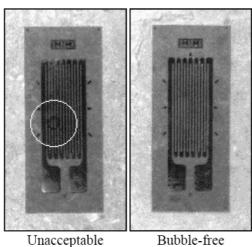
- Clean the solder flux from the joints.
- Inspect the gage bonding and solder joints.
- Check gage resistance and insulation.
- Anchor the lead wires and connecting wires.
- Apply appropriate protective coating.
- Check bridge wiring and resistance.


開秋成

Examples of Bad installation

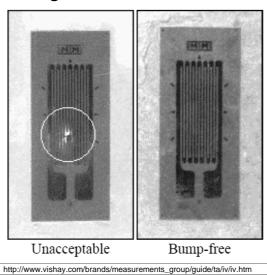
- Misaligned gage
- Unbonded backing
- > Insufficient curing
- Bumps and wrinkles in the grid
- > Trapped gas bubbles
- Uneven adhesive layer
- Bad lead wire soldering
- Insufficient insulation or protection

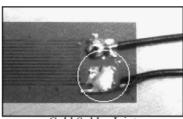
http://www.vishay.com/brands/measurements_group/guide/ta/iv/iv.htm


Gage Misalignment

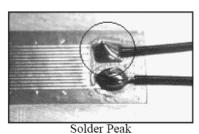
http://www.vishay.com/brands/measurements_group/guide/ta/iv/iv.htm

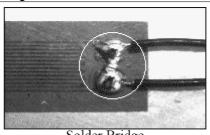
Examples of Bad installation

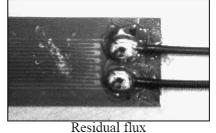

> Trapped gas bubble

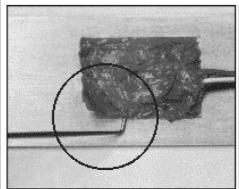

Bubble-free

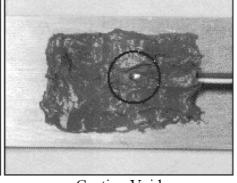
http://www.vishay.com/brands/measurements_group/guide/ta/iv/iv.htm


Trapped foreign matter


Examples of Bad installation Bad solder joint

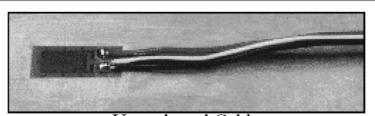

Cold Solder Joint


Interfere with flux removal and environmental protection http://www.vishay.com/brands/measurements_group/guide/ta/iv/iv.htm

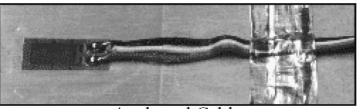


Solder Bridge

> Defective protective coating

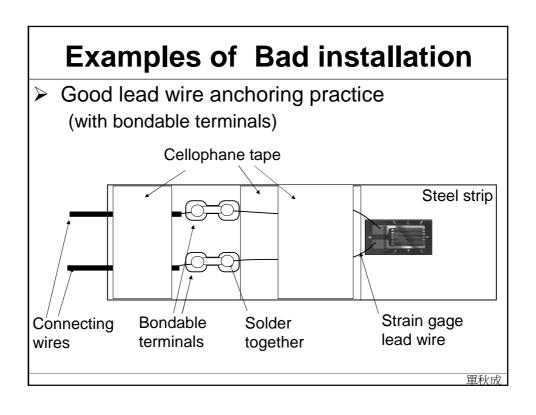

Unbonded Coating

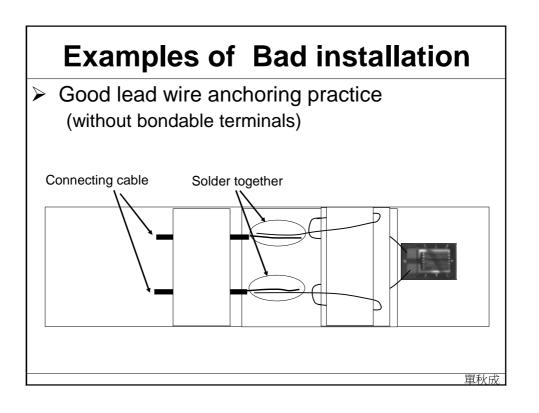
Coating Void

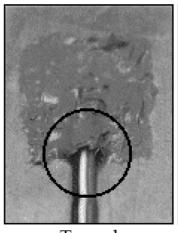

http://www.vishay.com/brands/measurements_group/guide/ta/iv/iv.htm

当秋 成

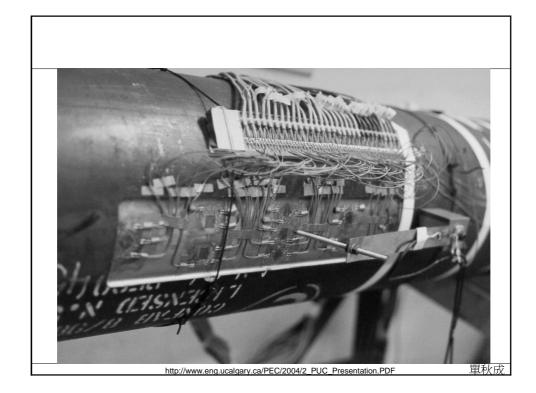
Examples of Bad installation




Unanchored Cable

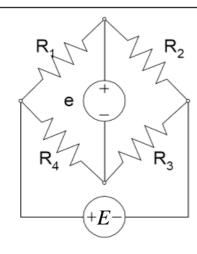

Anchored Cable

http://www.vishay.com/brands/measurements_group/guide/ta/iv/iv.htm


> Lead wire motion leading to tunnel in coating

Tunnel

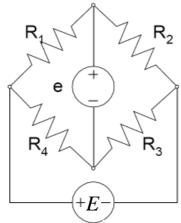
No Tunnel http://www.vishay.com/brands/measurements_group/guide/ta/iv/iv.htm


Introduction to resistance strain gage

- Equipment for strain measurement.
- Basic theory of resistance strain gage
- > Fundamental structure of strain gages
- ➤ How to Install a strain gage
- > The Wheatstone bridge
- Factors that affect the accuracy of strain gages
- How to select a suitable strain gage

開秋成

The Wheatstone Bridge



$$e = \left[\frac{R_2}{R_1 + R_2} - \frac{R_3}{R_3 + R_4} \right] E$$

http://www.ae.gatech.edu/people/jcraig/ae3145/Lab2/strain-gages.pdf

開かば

The Wheatstone bridge

$$e = \left[\frac{R_2}{R_1 + R_2} - \frac{R_3}{R_3 + R_4} \right] E$$

$$=\frac{R_2R_4-R_1R_3}{(R_1+R_2)(R_3+R_4)}E$$

Bridge balanced if:

$$R_2 R_4 = R_1 R_3$$

Suppose $R_1 = R_4$, $R_2 = R_3$

$$de = \frac{\partial e}{\partial R_1} dR_1 + \frac{\partial e}{\partial R_2} dR_2 + \frac{\partial e}{\partial R_3} dR_3 + \frac{\partial e}{\partial R_4} dR_4$$

http://www.ae.gatech.edu/people/jcraig/ae3145/Lab2/strain-gages.pdf

The Wheatstone bridge

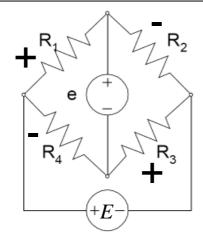
$$de = \frac{\partial e}{\partial R_1} dR_1 + \frac{\partial e}{\partial R_2} dR_2 + \frac{\partial e}{\partial R_3} dR_3 + \frac{\partial e}{\partial R_4} dR_4$$

01

$$de = \left[\frac{R_1 R_2}{(R_1 + R_2)^2} \left(\frac{dR_1}{R_1} - \frac{dR_2}{R_2} \right) + \frac{R_3 R_4}{(R_3 + R_4)^2} \left(\frac{dR_3}{R_3} - \frac{dR_4}{R_4} \right) \right] E$$

Ignoring second order terms: Non-linearity may occur!!

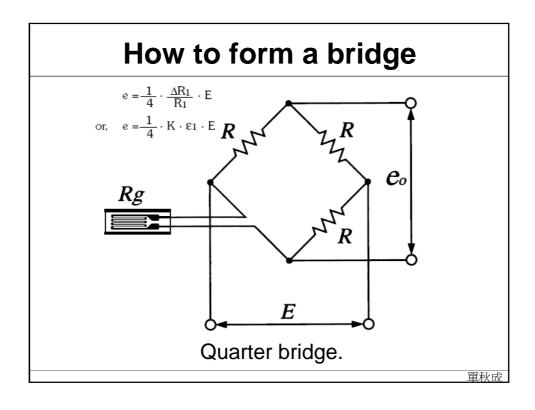
Note the signs!

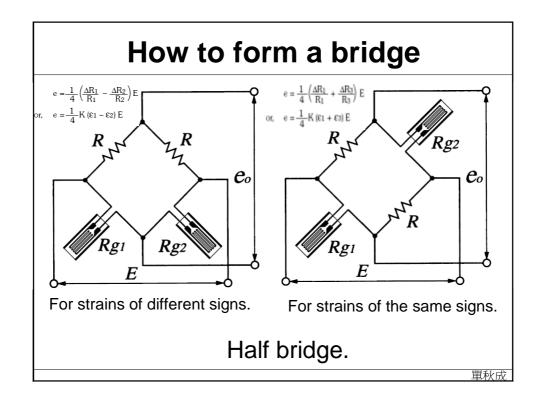

$$de = \frac{1}{4} \left[\frac{dR_1}{R_1} - \frac{dR_2}{R_2} + \frac{dR_3}{R_3} - \frac{dR_4}{R_4} \right] E$$

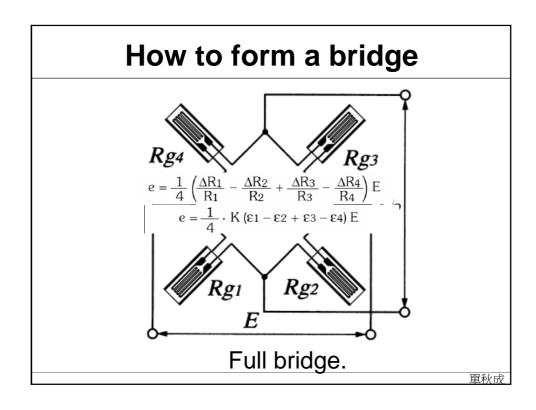
$$de = \frac{GF}{4} \left[\varepsilon_1 - \varepsilon_2 + \varepsilon_3 - \varepsilon_4 \right] E$$

http://www.ae.gatech.edu/people/jcraig/ae3145/Lab2/strain-gages.pdf

開利は

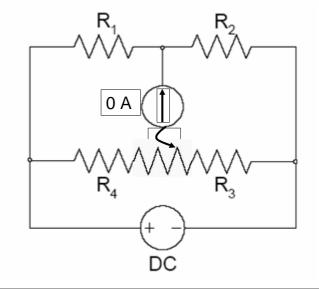

The Wheatstone bridge




$$de = \frac{1}{4} \left[\frac{dR_1}{R_1} - \frac{dR_2}{R_2} + \frac{dR_3}{R_3} - \frac{dR_4}{R_4} \right] E$$

$$de = \frac{GF}{4} \left[\varepsilon_1 - \varepsilon_2 + \varepsilon_3 - \varepsilon_4 \right] E$$

http://www.ae.gatech.edu/people/jcraig/ae3145/Lab2/strain-gages.pdf

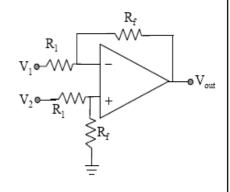


Interrogating the Wheatstone Bridge

単秋成

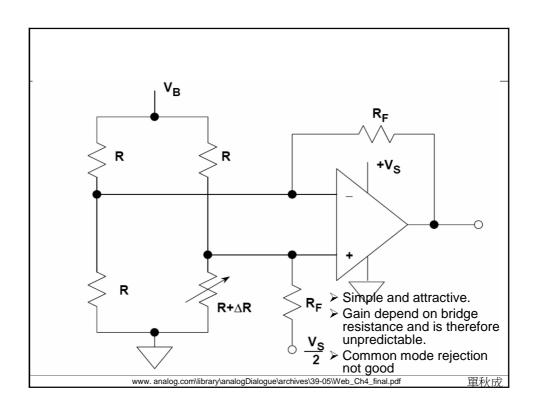
Slow and inefficient!

Not easily automated!

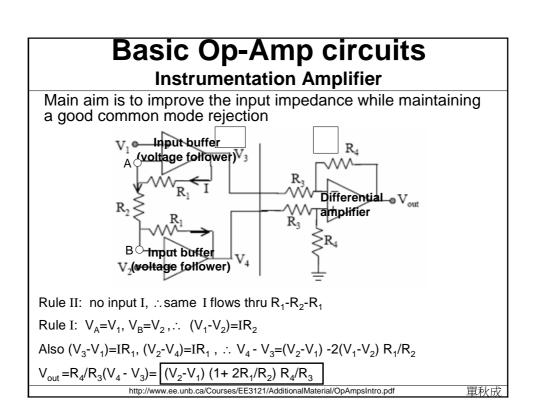

出小叶

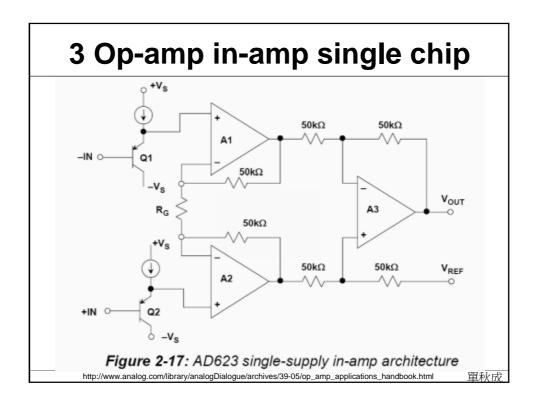
Basic Op-Amp circuits

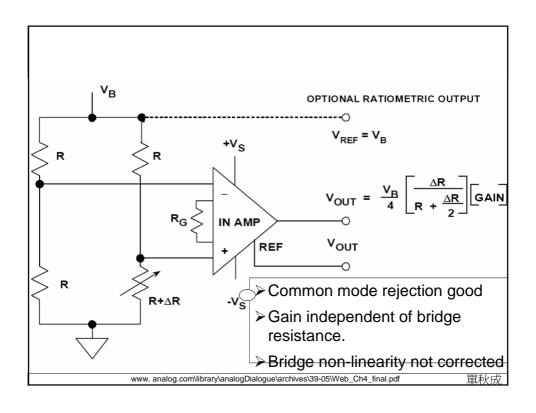
Differential Amplifier


Rule II:
$$(V_2 - V_+)/R_1 = I_2 = V_+/R_f$$

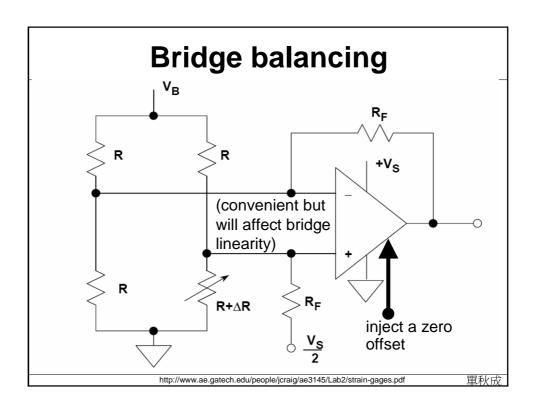
so: $V_+ = V_2 R_f/(R_1 + R_f)$

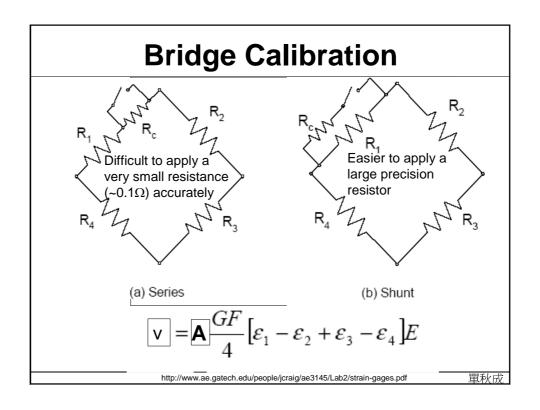

Since $V_+ = V_-$, can write as $V_{out} = (V_2 - V_1)R_f/R_1$




- > Another option for carrying out subtraction.
- Good common mode rejection.

http://www.ee.unb.ca/Courses/EE3121/AdditionalMaterial/OpAmpsIntro.pdf





Introduction to resistance strain gage

- Equipment for strain measurement.
- Basic theory of resistance strain gage
- > Fundamental structure of strain gages
- ➤ How to Install a strain gage
- > The Wheatstone bridge
- Factors that affect the accuracy of strain gages
- How to select a suitable strain gage

開秋成

Temperature induced apparent strain

Temperature induced apparent strain

Temperature affects:

- > Resistivity of a material.
- > Thermal expansion of the
 - √ gage material
 - ✓ structure to be measured.

Note that the temp. effects vary with temperature

單秋成

Temperature effect

Table 2. Properties of Various Strain Gage Grid Materials

Material	Composition	Use	GF	Resistivity (Ohm/mil-ft)	Temp. Coef. of Resistance (ppm/F)	Temp. Coef. of Expansion (ppm/F)	Max Operating Temp. (F)
Constantan	45% NI, 55% Cu	Strain Gage	2.0	290	6	8	900
Isoelastic	36% Ni, 8% Cr, 0.5% Mo, 55.5% Fe	Strain gage (dynamic)	3.5	680	260		800
Manganin	84% Cu, 12% Mn, 4% Ni	Strain gage (shock)	0.5	260	6		
Nichrome	80% Ni, 20% Cu	Ther- mometer	2.0	640	220	5	2000
Iridium- Platinum	95% Pt, 5% Ir	Ther- mometer	5.1	135	700	5	2000
Monel	67% Ni, 33% Cu		1.9	240	1100		
Nickel			-12	45	2400	8	
Karma	74% Ni, 20% Cr, 3% Al, 3% Fe	Strain Gage (hi temp)	2.4	800	10		1500

http://www.ae.gatech.edu/people/jcraig/ae3145/Lab2/strain-gages.pdf

Temperature effect

Table 2. Properties of Various Strain Gage Grid Materials

Material	Composition	Use	GF	Resistivity (Ohm/mil-ft)	Temp. Coef. of Resistance (ppm/F)	Temp. Coef. of Expansion (ppm/F)	Max Operating Temp. (F)
Constantan	45% NI, 55% Cu	Strain Gage	2.0	290	6	8	900

For a "constantan" gage on an aluminum substrate with a thermal expansion coefficient of 13 ppm/ °F, the differential thermal expansion strain is:

$$\varepsilon = 13 - 8 = 5 \text{ microstrain} / {}^{\circ}F$$

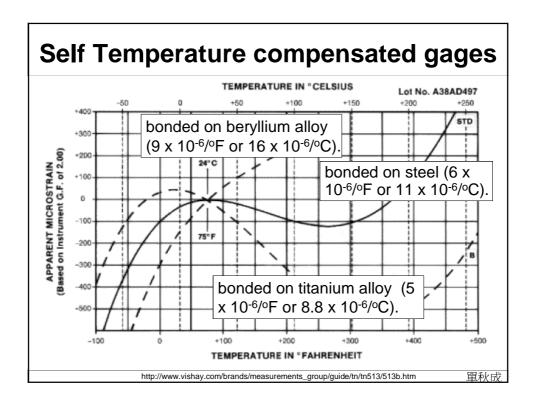
Thus the net apparent strain due to resistive as well as expansion effects would be roughly:

$$\varepsilon = 3 + 5 = 8 \text{ microstrain } / \circ F$$
 Note: GF=2.0

$$GF = \frac{dR/R}{\varepsilon}$$

http://www.ae.gatech.edu/people/jcraig/ae3145/Lab2/strain-gages.pdf

單秋成

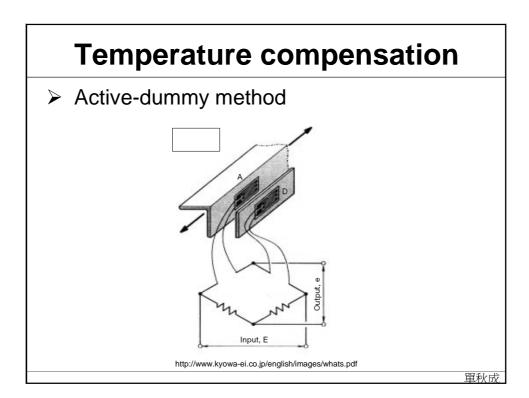

Self Temperature compensated gages

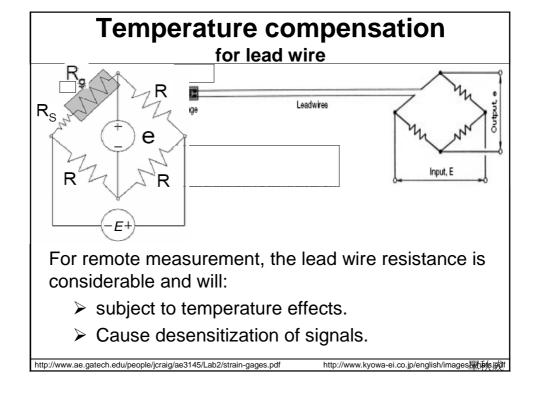
(STC gages)

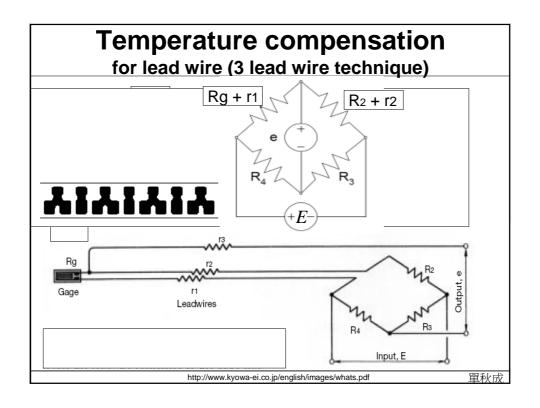
The temperature coefficients of the grid materials depend on:

- ✓ Alloying contents.
- ✓ Degree of cold working/heat treatment.

Hence there is a batch to batch difference in temperature coefficient even for the same alloy.


Temperature compensation


Temperature effect on measurement



- ✓ Temperature coefficient of the grid.
- ✓ Thermal expansion mismatch between the gage material and the substrate structure.
- ✓ Lead wire resistance changes.

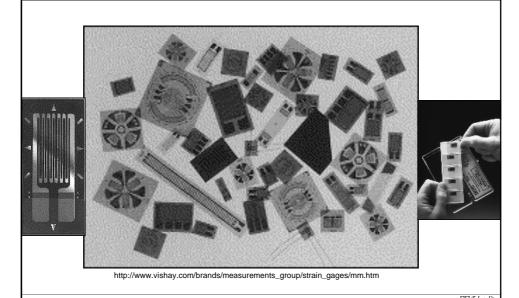
秋成

Other factors that will affect a strain gage

- Large plastic strain
- > Corrosive environment
- Cyclic fatigue
- Magnetic field

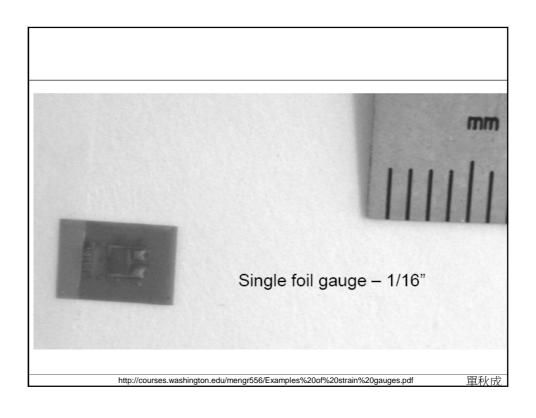
http://www.kyowa-ei.co.jp/english/images/whats.pdf

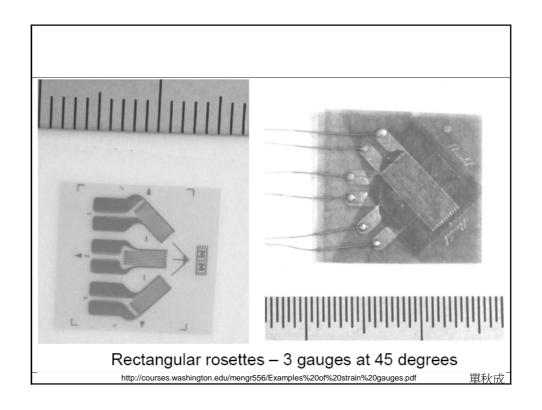
Introduction to resistance strain gage

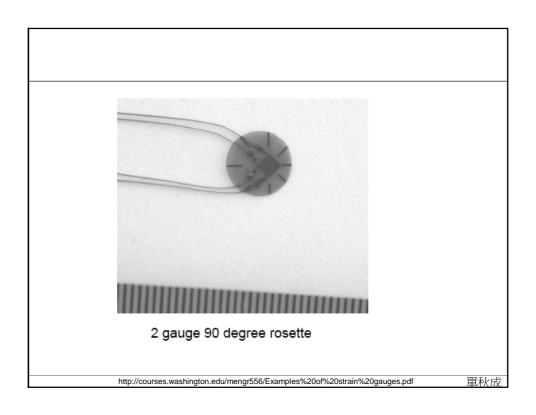

- > Equipment for strain measurement.
- Basic theory of resistance strain gage
- > Fundamental structure of strain gages
- ➤ How to Install a strain gage
- ➤ The Wheatstone bridge
- Factors that affect the accuracy of strain gages
- How to select a suitable strain gage

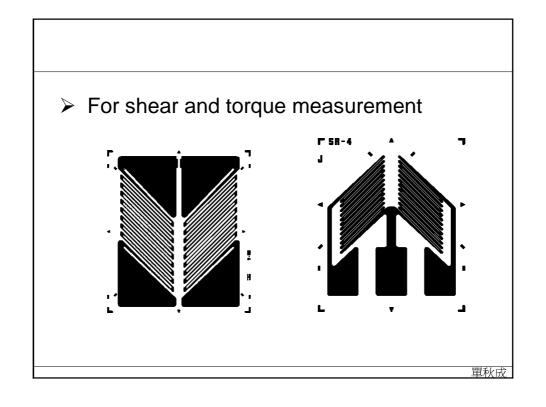
開秋成

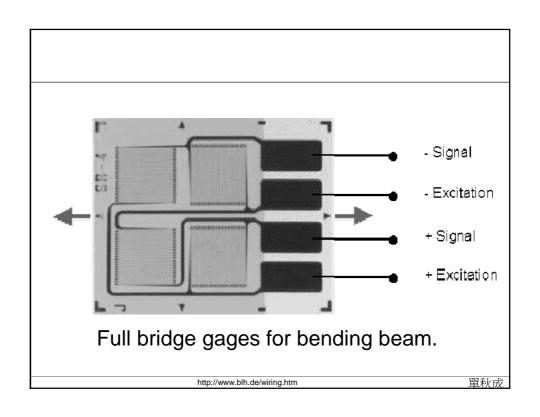
Selecting a gage

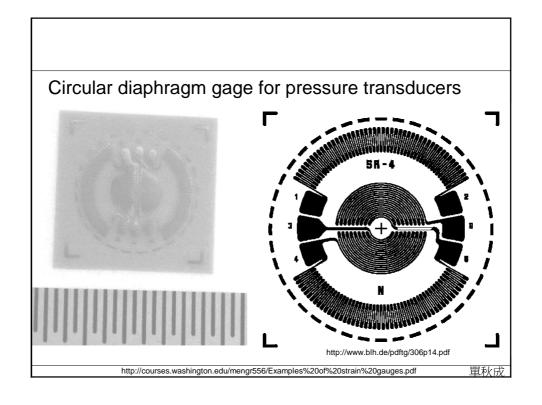

追秋成

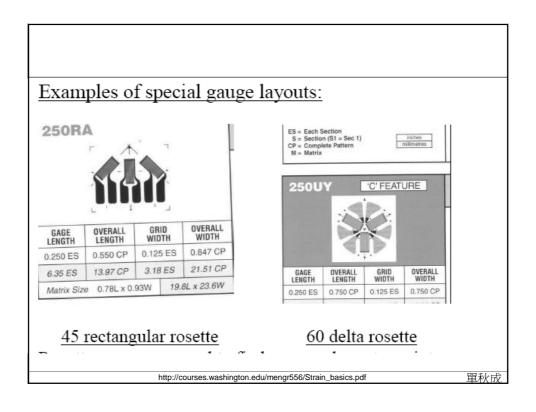

Different types of strain gages

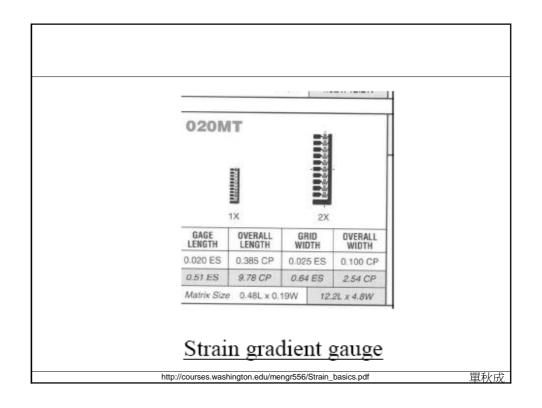


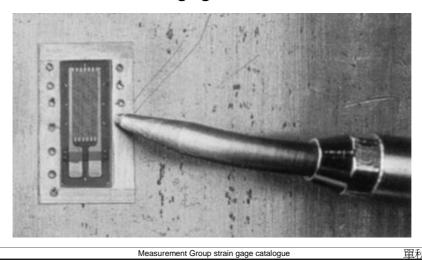

Different types of strain gages

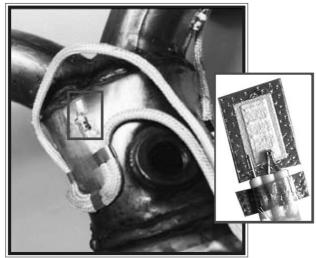

- Difference in make-up
 - √ Backing sheets
 - ✓ Metal foil
 - ✓ cement
- > Difference in sizes
- Difference in shapes



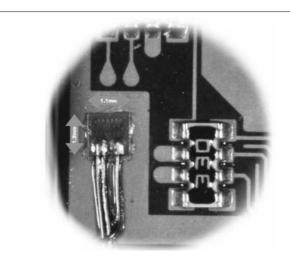






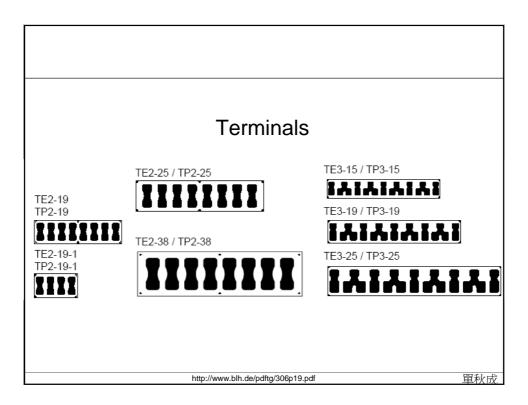


Weldable strain gage

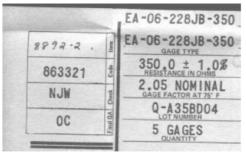


The complex strain measuring system used for jet engine blade vibrations is now available pre-installed on an easily spot weldable shim for test measurements to 1000°C.

HBWANV-12-250-X-2CB

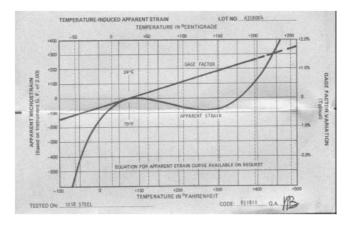

http://www.hitecprod.com/Pdf%20files/70_HtempweldSC.pdf

聞か成



Miniature gage used in printed circuit board

http://www.kyowa-ei.co.jp/english/kfrs/top.htm



Foil gauges are, by the nature of the fabrication process, made in large batches. The characteristics of all gauges in a batch are very consistent. A few gauges in each batch are tested and calibrated and the test values are provided for all gauges in a batch.

http://courses.washington.edu/mengr556/Strain_basics.pdf

Data on the temperature dependence of the characteristics of the gauge are also provided. Note that both the resistance and gauge factor vary with temperature.

http://courses.washington.edu/mengr556/Strain_basics.pdf

聞秋成

How to choose a gage

B129

単秋成

How to choose a gage

The answer to this question requires the user to define more specifically his application. Namely,

- ✓ What is to be measured?
- ✓ Is this a stress analysis or a transducer application?
- ✓ What are the Ambient Conditions?
- ✓ What is the operating Temperature Range?
- ✓ Is the Magnitude of Strain known?
- ✓ Is the Principal Axis Known?
- ✓ Are there Strain Gradients?
- ✓ What is the duration of the Measurement?
- ✓ Number of cycles
- ✓ Accuracy Requirements

http://www.blh.de/faq.htm

出かば

General selecting procedures

- Determine the gage alloy and backing material.
- Self temperature compensation.
- Gage length and size
- Gage pattern
- Other special requirement (fatigue life, maximum strain, maximum service temperature)

TN-505

Strain gage layout for different applications

	Table 5. Bridge Configurations for Uniaxial Members					
K	Configuration	Notes				
1		Must use dummy gage in an adjacent arm (2 or 4) to achieve temperature compensation				
2	1	Rejects bending strain but not temperature compensated; must add dummy gages in arms 2 & 4 to compensate for temperature.				
(1+v)	1	Temperature compensated but sensitive to bending strains				
2(1+v)	3 4	Best: compensates for temperature and rejects bending strain.				
http://www.ae.gatech.edu/people/jcraig/ae3145/Lab2/strain-gages.pdf 單秋成						

	Table 6. Bridge Configurations for Flexural Members					
K	Configuration	Notes				
1		Also responds equally to axial strains; must use dummy gage in an adjacent arm (2 or 4) to achieve temperature compensation				
2	2	Half-bridge; rejects axial strain and is temperature compensated; dummy resistors in arms 3 & 4 can be in strain indicator.				
4	3 4	Best: Max sensitivity to bending; rejects axial strains; temperature compensated.				
2(1+v)	1 2	Adequate, but not as good as F-3; compensates for temperature and rejects axial strain.				
· · · · · · · · · · · · · · · · · · ·	http://www.ae.gatech.edu/people/jcr	raig/ae3145/Lab2/strain-gages.pdf 單秋成				

Table 7. Bridge Configuration for Torsion Members					
No.	K	Configuration	Notes		
T-1	2	2 1	Half Bridge: Gages at ±45° to centerline sense principal strains which are equal & opposite for pure torsion; bending or axial force induces equal strains and is rejected; arms are temperature compensated.		
T-2	4	2 1	Best: full-bridge version of T-1; rejects axial and bending strain and is temperature compensated.		
		http://www.ae.gatech.edu/people/jcraig/ae			

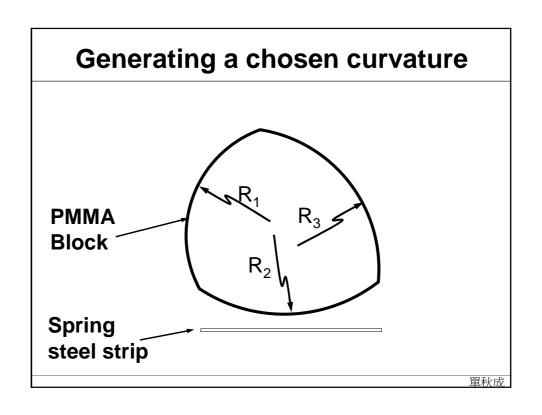
END

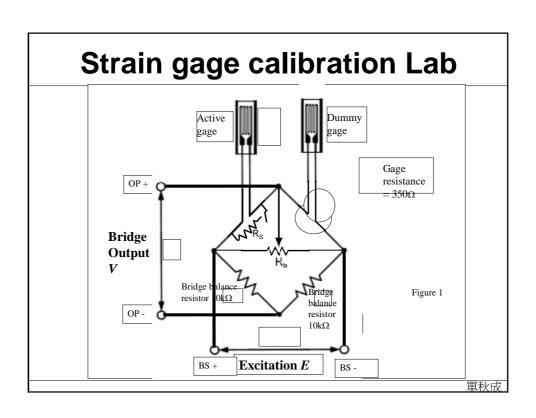
單秋成

Strain gage calibration Lab

準備事項:

- (1) 帶游標卡尺;
- (2) Review instrumentation amplifier;
- (3) 複習黏貼應變計方法與注意事項;
- (4) 研習Wheatstone bridge 相關原理,並 嘗試回答預習報告中的相關問題;
- (5) 複習梁之彎曲理論,請預先計算一厚 度為 t mm, 曲率半徑為 R mm之梁, 其表面應變為若干。


単秋成


Strain gage calibration Lab

- 1. Sticking of strain gage.
- 2. Soldering of lead wire.
- 3. Bridge completion.
- 4. Bridge balancing.
- 5. Direct calibration:- Strip bending.
- 6. Indirect calibration: Shunt calibration.
- 7. Strain gage amplifier characteristics

單秋成

Strain gage calibration Lab Connectin gage lead wire Steel strip Bondable Solder terminals together Figure 2

Strain gage calibration Lab

預習報告

- Suppose R_b and R_s are non-existent, what is the relationship between the Bridge output voltage V, Excitation E and the change in resistance ΔR_g in the active gage.
- What is the gage factor? In the absence of R_b and R_s, what is the relationship between the Bridge output voltage V, Excitation E and the strain ε sensed by the active gage?
- \triangleright The bridge balance resistors provided are 10 kΩ, Can they have different values?

預習報告

- ➤ What is the use of R_b in the bridge circuit in Figure 1? Please briefly explain the underlying principle.
- ➤ What is the use of R_s in the bridge circuit in Figure 1? Please briefly explain the underlying principle.
- Suppose $R_s = 100k\Omega$ and the bridge is initially balanced. What will the bridge output voltage become if R_s is shunted across the active gage.

單秋成

預習報告

- What happen if +ve and -ve bridge excitation voltage are interchanged?
- What happen if the bridge output and bridge excitations are interchanged (ie. OP+ is interchanged with BS+ and OP- is interchanged with BS-)?
- What is the relation between the surface strain, radius of curvature, Young's modulus and the thickness of a beam under bending?

Strain gage amplifier characteristics

- ➤ What happen if you interchange the BS+ and BS-?
- ➤ What happen if you interchange the OP+ and OP-?
- What happen if you have not zero the bridge before measurement?

開利成